
Exam Analysis on Manifolds

WIANVAR-07.2015-2016.2A

April 4th, 2016, 9:00-12:00 hrs.

This exam consists of three assignments. You get 10 points for free.

Assignment 1. (30 pt.)

Let M = {(x, y, z) ∈ R3 | x2 + y2 = 1}, and let i :M→ R3 be the inclusion map.

1. (8 pt.) Construct an atlas on M such that:

(i) M becomes a two-dimensional C∞-manifold;

(ii) the inclusion map i is a C∞-map.

Prove that this atlas satis�es both (i) and (ii).

2. (8 pt.) Let σ be the one-form on R3 given by σ = xdx+ ydy.

Prove that i∗σ = 0.

3. (7 pt.) Let Ω = dx ∧ dy ∧ dz be the volume form on R3, and let X be the

vector �eld on R3 given by

X = x
∂

∂x
+ y

∂

∂y
.

Prove that ιXΩ = xdy∧ dz− ydx∧ dz.

(Recall that ιXΩ is the two-form given by ιXΩ(Y, Z) = Ω(X, Y, Z).)

4. (7 pt.) Prove that i∗(ιXΩ) is a nowhere zero two-form on M.

Assignment 2. (30 pt.)

Let M be a compact connected 2n-dimensional manifold without boundary, and let

ω be a two-form on M.

In the following assignments, ωk = ω∧ · · ·∧ω︸ ︷︷ ︸
k factors

, for integers k ≥ 1.

1. (8 pt.) Prove: if ω is closed, then for k ≥ 1, the 2k-form ωk is also closed.

2. (8 pt.) Prove: if ω is exact, then for k ≥ 1, the 2k-form ωk is also exact.

In the following two assignments, assume that ωn is a nowhere zero 2n-form on M.

3. (8 pt.) Prove that ω is not exact.

4. (6 pt.) Prove that M is not contractible to a point.

Assignment 3 on next page
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Assignment 3. (30 pt.)

Let M = {(x, y) ∈ R2 | x2 + y2 < 1}. We turn M into a Riemannian two-manifold by

equipping it with the inner product 〈·, ·〉, de�ned by

〈v,w〉 = v ·w
h(x, y)2

,

for v,w ∈ TpM, where h : M → R is a positive C2-function on M, and v · w is the

standard inner product of v and w on R2.

1. (5 pt.) Prove that there is a di�erentiable function f :M→ R such that {F1, F2},

with F1 = f
∂
∂x

and F2 = f
∂
∂y

, is an (orthonormal) moving frame on M.

2. (6 pt.) Determine the coframe {ϑ1, ϑ2} of this moving frame (i.e., express these

one-forms in terms of dx and dy).

3. (10 pt.) Determine the connection form ω12 of the moving frame {F1, F2}.

4. (9 pt.) Determine the Gaussian curvature K(x, y) at (x, y) ∈M, and prove that

K = −1 for h(x, y) = 1
2 (1− x

2 − y2).
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Solutions

Assignment 1.

1. Let U1 = (0, 2π)× R ⊂ R2 and let U2 = (− 1
2π,

1
2π)× R ⊂ R2, and let fi : Ui → R3

be given by

fi(u, v) = (cosu, sinu, v).

We shall prove that {(U1, f1), (U2, f2)} de�nes a C
∞-atlas on M. First observe that

V := f1(U1) ∩ f2(U2) consists of two connected components. More precisely, (u, v) ∈
f−11 (V) i� 0 < u < 1

2π or 3
2π < u < 2π. Similarly, (u, v) ∈ f−12 (V) i� − 1

2π < u < 0 or

0 < u < 1
2π. Furthermore, if f1(u, v) = f2(u

′, v ′), then v ′ = v and u ′ = u modulo 2π.

A careful analysis shows that, for (u, v) ∈ f−11 (V), we have

f−12 ◦ f1(u, v) =

(u, v), if 0 < u < 1
2π,

(u− 2π, v), if 32π < u < 2π.

Therefore, f−12 ◦ f1 : f
−1
1 (V) → f−12 (V) is C∞. Its inverse f−11 ◦ f2 : f

−1
2 (V) → f−11 (V) is

also C∞.

To prove that the inclusion map is C∞, observe that id−1 ◦ i◦fj : Uj → R3 is equal
to gj : Uj → R3, de�ned by gj(u, v) = (cosu, sinu, v). Note that on the manifold R3

we use the atlas (R3, id). Also note that fj and gj only di�er in the sense that they

have di�erent ranges. Since gj is C
∞, the claim follows.

2. We shall prove that both local representatives f∗j (i
∗σ), j = 1, 2, are zero. If f is

either of the maps f1 or f2, then f
∗(i∗σ) = (i◦f)∗(σ), and (i◦f)(u, v) = (cosu, sinu, v).

Hence, f∗(i∗σ) = cosud(cosu)+ sinud(sinu) = − cosu sinudu+ sinu cosudu = 0.

3. Let ω = ιXΩ, then

ω = ω(
∂

∂x
,
∂

∂y
)dx∧ dy+ω(

∂

∂x
,
∂

∂z
)dx∧ dz+ω(

∂

∂y
,
∂

∂z
)dy∧ dz.

Therefore, the claim follows from

ω(
∂

∂x
,
∂

∂y
) = Ω(x

∂

∂x
+ y

∂

∂y
,
∂

∂x
,
∂

∂y
) = 0,

ω(
∂

∂x
,
∂

∂z
) = Ω(x

∂

∂x
+ y

∂

∂y
,
∂

∂x
,
∂

∂z
) = −y,

ω(
∂

∂y
,
∂

∂z
) = Ω(x

∂

∂x
+ y

∂

∂y
,
∂

∂y
,
∂

∂z
) = x.

4. The local representatives of ω are

(i ◦ fj)∗(ω) = − sinud(cosu)∧ dv+ cosud(sinu)∧ dv = du∧ dv.

Since these local representatives are nowhere zero, ω is nowhere zero.

3



Assignment 2.

The proofs in parts 1 and 2 are by induction, using ωk = ω∧ωk−1 for k > 1.

1. Since dω = 0, the claim is obvious for k = 1. So let k > 1, and suppose dωk−1 = 0.

Then, since degωk−1 = 2(k− 1) is even:

dωk = dω∧ωk−1 +ω∧ dωk−1 = 0.

Therefore, ωk is closed for all integers k ≥ 1.

2. Since ω is exact (say ω = dη), the claim is obvious for k = 1. So let k > 1, and

suppose ωk−1 is exact. This implies dωk−1 = 0, so

ωk = dη∧ωk−1 = d(η∧ωk−1) − η∧ (dωk−1) = d(η∧ωk−1).

Therefore, ωk is exact for all integers k ≥ 1.

3. Suppose ω is exact. According to part 2, ωn is exact, say ωn = dη for some

(2n − 1)-form η on M. The manifold M is orientable, since ωn is a nowhere zero

2n-form on M. Therefore, we may use the theorem of Stokes to derive

0 6=
∫
M

ωn =

∫
M

dη =

∫
∂M

η = 0,

since ∂M = ∅. (The �rst inequality follows from the fact that M is connected.) This

contradiction proves that ω is not exact.

4. Since dωn = 0 (being a (2n+1)-form on a 2n-dimensional manifold), ωn is closed.

Suppose M is contractible to a point. Then ωn is exact according to Poincar�e's

Lemma. According to Parts 2 and 3 this is a contradiction, so M is not contractible

to a point.

Assignment 3.

1. Since 〈f ∂
∂x
, f ∂
∂y
〉 = 0, and 〈f ∂

∂x
, f ∂
∂x
〉 = 〈f ∂

∂y
, f ∂
∂y
〉 = f2

h2
, we take f = h.

2. Let ϑ1 and ϑ2 be the dual one-forms, then

ϑ1 = ϑ1(
∂

∂x
)dx+ ϑ1(

∂

∂y
)dy =

1

h
dx.

Similarly: ϑ2 =
1

h
dy.

3. Let ω12 = P dx+Qdy. To determine P and Q, we use the identities

dϑ1 = ω12 ∧ ϑ2 en dϑ2 = −ω12 ∧ ϑ1.

These yield

hy

h2
dx∧ dy =

1

h
P dx∧ dy,

−
hx

h2
dx∧ dy =

1

h
Qdx∧ dy.
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Therefore,

P =
hy

h
, Q = −

hx

h
, (1)

so

ω12 =
1

h
(hy dx− hx dy).

4. Since dω12 = −Kϑ1 ∧ ϑ2, and

dω12 = (−Py +Qx)dx∧ dy = h2(−Py +Qx) ϑ1 ∧ ϑ2.

we have

K = h2 (Py −Qx). (2)

Substitution in (1) and (2) yields

K = h (hxx + hyy) − (h2x + h
2
y).

If h(x, y) = 1
2 (1− x

2 − y2), then K = −1.
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