Exam Analysis on Manifolds

WIANVAR-07.2015-2016.2A
April 4th, 2016, 9:00-12:00 hrs.
This exam consists of three assignments. You get 10 points for free.

Assignment 1. (30 pt.)

Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$, and let $i: M \rightarrow \mathbb{R}^{3}$ be the inclusion map.

1. (8 pt.$)$ Construct an atlas on M such that:
(i) M becomes a two-dimensional C^{∞}-manifold;
(ii) the inclusion map i is a C^{∞}-map.

Prove that this atlas satisfies both (i) and (ii).
2. (8 pt .) Let σ be the one-form on \mathbb{R}^{3} given by $\sigma=x d x+y d y$. Prove that $i^{*} \sigma=0$.
3. (7 pt.) Let $\Omega=d x \wedge d y \wedge d z$ be the volume form on \mathbb{R}^{3}, and let X be the vector field on \mathbb{R}^{3} given by

$$
x=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

Prove that $\mathrm{l}_{\mathrm{x}} \Omega=x \mathrm{dy} \wedge \mathrm{d} z-y \mathrm{~d} x \wedge \mathrm{~d} z$.
(Recall that $\iota_{\chi} \Omega$ is the two-form given by $\iota_{\chi} \Omega(Y, Z)=\Omega(X, Y, Z)$.)
4. (7 pt.) Prove that $i^{*}\left(\iota_{\chi} \Omega\right)$ is a nowhere zero two-form on M.

Assignment 2. (30 pt.)

Let M be a compact connected $2 n$-dimensional manifold without boundary, and let ω be a two-form on M.

In the following assignments, $\omega_{k}=\underbrace{\omega \wedge \ldots \wedge \omega}_{k \text { factors }}$, for integers $k \geq 1$.

1. (8 pt .) Prove: if ω is closed, then for $k \geq 1$, the 2 k -form ω_{k} is also closed.
2. (8 pt .) Prove: if ω is exact, then for $k \geq 1$, the 2 k -form ω_{k} is also exact.

In the following two assignments, assume that ω_{n} is a nowhere zero $2 n$-form on M.
3. (8 pt.) Prove that ω is not exact.
4. (6 pt.) Prove that M is not contractible to a point.

Assignment 3 on next page

Assignment 3. (30 pt.)
Let $M=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$. We turn M into a Riemannian two-manifold by equipping it with the inner product $\langle\cdot, \cdot\rangle$, defined by

$$
\langle v, w\rangle=\frac{v \cdot w}{h(x, y)^{2}},
$$

for $v, w \in T_{p} M$, where $h: M \rightarrow \mathbb{R}$ is a positive C^{2}-function on M, and $v \cdot w$ is the standard inner product of v and w on \mathbb{R}^{2}.

1. (5 pt.) Prove that there is a differentiable function $f: M \rightarrow \mathbb{R}$ such that $\left\{F_{1}, F_{2}\right\}$, with $F_{1}=f \frac{\partial}{\partial x}$ and $F_{2}=f \frac{\partial}{\partial y}$, is an (orthonormal) moving frame on M.
2. (6 pt.) Determine the coframe $\left\{\vartheta_{1}, \vartheta_{2}\right\}$ of this moving frame (i.e., express these one-forms in terms of $d x$ and $d y$).
3. (10 pt.) Determine the connection form ω_{12} of the moving frame $\left\{F_{1}, F_{2}\right\}$.
4. (9 pt.) Determine the Gaussian curvature $K(x, y)$ at $(x, y) \in M$, and prove that $K=-1$ for $h(x, y)=\frac{1}{2}\left(1-x^{2}-y^{2}\right)$.

Solutions

Assignment 1.

1. Let $\mathrm{U}_{1}=(0,2 \pi) \times \mathbb{R} \subset \mathbb{R}^{2}$ and let $\mathrm{U}_{2}=\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right) \times \mathbb{R} \subset \mathbb{R}^{2}$, and let $\mathrm{f}_{\mathrm{i}}: \mathrm{U}_{\mathrm{i}} \rightarrow \mathbb{R}^{3}$ be given by

$$
f_{i}(u, v)=(\cos u, \sin u, v)
$$

We shall prove that $\left\{\left(U_{1}, f_{1}\right),\left(U_{2}, f_{2}\right)\right\}$ defines a C^{∞}-atlas on M. First observe that $\mathrm{V}:=\mathrm{f}_{1}\left(\mathrm{U}_{1}\right) \cap \mathrm{f}_{2}\left(\mathrm{U}_{2}\right)$ consists of two connected components. More precisely, $(u, v) \in$ $\mathrm{f}_{1}^{-1}(\mathrm{~V})$ iff $0<u<\frac{1}{2} \pi$ or $\frac{3}{2} \pi<u<2 \pi$. Similarly, $(u, v) \in \mathrm{f}_{2}^{-1}(V)$ iff $-\frac{1}{2} \pi<u<0$ or $0<u<\frac{1}{2} \pi$. Furthermore, if $f_{1}(u, v)=f_{2}\left(u^{\prime}, v^{\prime}\right)$, then $v^{\prime}=v$ and $u^{\prime}=u$ modulo 2π. A careful analysis shows that, for $(u, v) \in f_{1}^{-1}(V)$, we have

$$
f_{2}^{-1} \circ f_{1}(u, v)= \begin{cases}(u, v), & \text { if } 0<u<\frac{1}{2} \pi \\ (u-2 \pi, v), & \text { if } \frac{3}{2} \pi<u<2 \pi\end{cases}
$$

Therefore, $f_{2}^{-1} \circ f_{1}: f_{1}^{-1}(V) \rightarrow f_{2}^{-1}(V)$ is C^{∞}. Its inverse $f_{1}^{-1} \circ f_{2}: f_{2}^{-1}(V) \rightarrow f_{1}^{-1}(V)$ is also C^{∞}.

To prove that the inclusion map is C^{∞}, observe that $\mathrm{id}^{-1} \circ \mathfrak{i} \circ \mathrm{f}_{\mathrm{j}}: \mathrm{U}_{\mathrm{j}} \rightarrow \mathbb{R}^{3}$ is equal to $g_{j}: U_{j} \rightarrow \mathbb{R}^{3}$, defined by $g_{j}(u, v)=(\cos u, \sin u, v)$. Note that on the manifold \mathbb{R}^{3} we use the atlas $\left(\mathbb{R}^{3}, i d\right)$. Also note that f_{j} and g_{j} only differ in the sense that they have different ranges. Since g_{j} is C^{∞}, the claim follows.
2. We shall prove that both local representatives $f_{j}^{*}\left(i^{*} \sigma\right), j=1,2$, are zero. If f is either of the maps f_{1} or f_{2}, then $f^{*}\left(i^{*} \sigma\right)=(i \circ f)^{*}(\sigma)$, and $(i \circ f)(u, v)=(\cos u, \sin u, v)$. Hence, $f^{*}\left(i^{*} \sigma\right)=\cos u d(\cos u)+\sin u d(\sin u)=-\cos u \sin u d u+\sin u \cos u d u=0$.
3. Let $\omega=\iota_{\chi} \Omega$, then

$$
\omega=\omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) d x \wedge d y+\omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right) d x \wedge d z+\omega\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) d y \wedge d z
$$

Therefore, the claim follows from

$$
\begin{aligned}
& \omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=\Omega\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=0 \\
& \omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right)=\Omega\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right)=-y \\
& \omega\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=\Omega\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=x
\end{aligned}
$$

4. The local representatives of ω are

$$
\left(i \circ f_{j}\right)^{*}(w)=-\sin u d(\cos u) \wedge d v+\cos u d(\sin u) \wedge d v=d u \wedge d v
$$

Since these local representatives are nowhere zero, ω is nowhere zero.

Assignment 2.

The proofs in parts 1 and 2 are by induction, using $\omega_{k}=\omega \wedge \omega_{k-1}$ for $k>1$.

1. Since $d \omega=0$, the claim is obvious for $k=1$. So let $k>1$, and suppose $d \omega_{k-1}=0$. Then, since $\operatorname{deg} \omega_{k-1}=2(k-1)$ is even:

$$
\mathrm{d} \omega_{\mathrm{k}}=\mathrm{d} \omega \wedge \omega_{\mathrm{k}-1}+\omega \wedge \mathrm{d} \omega_{\mathrm{k}-1}=0
$$

Therefore, ω_{k} is closed for all integers $k \geq 1$.
2. Since ω is exact (say $\omega=d \eta$), the claim is obvious for $k=1$. So let $k>1$, and suppose ω_{k-1} is exact. This implies $d \omega_{k-1}=0$, so

$$
\omega_{k}=d \eta \wedge \omega_{k-1}=d\left(\eta \wedge \omega_{k-1}\right)-\eta \wedge\left(d \omega_{k-1}\right)=d\left(\eta \wedge \omega_{k-1}\right) .
$$

Therefore, ω_{k} is exact for all integers $k \geq 1$.
3. Suppose ω is exact. According to part $2, \omega_{n}$ is exact, say $\omega_{n}=d \eta$ for some ($2 n-1$)-form η on M. The manifold M is orientable, since ω_{n} is a nowhere zero $2 n$-form on M. Therefore, we may use the theorem of Stokes to derive

$$
0 \neq \int_{M} \omega_{n}=\int_{M} d \eta=\int_{\partial M} \eta=0
$$

since $\partial M=\emptyset$. (The first inequality follows from the fact that M is connected.) This contradiction proves that ω is not exact.
4. Since $d \omega_{n}=0$ (being a $(2 n+1)$-form on a $2 n$-dimensional manifold), ω_{n} is closed. Suppose M is contractible to a point. Then ω_{n} is exact according to Poincaré's Lemma. According to Parts 2 and 3 this is a contradiction, so M is not contractible to a point.

Assignment 3.

1. Since $\left\langle f \frac{\partial}{\partial x}, f \frac{\partial}{\partial y}\right\rangle=0$, and $\left\langle f \frac{\partial}{\partial x}, f \frac{\partial}{\partial x}\right\rangle=\left\langle f \frac{\partial}{\partial y}, f \frac{\partial}{\partial y}\right\rangle=\frac{f^{2}}{h^{2}}$, we take $f=h$.
2. Let ϑ_{1} and ϑ_{2} be the dual one-forms, then

$$
\vartheta_{1}=\vartheta_{1}\left(\frac{\partial}{\partial x}\right) d x+\vartheta_{1}\left(\frac{\partial}{\partial y}\right) d y=\frac{1}{h} d x .
$$

Similarly: $\vartheta_{2}=\frac{1}{h} d y$.
3. Let $\omega_{12}=P d x+Q d y$. To determine P and Q, we use the identities

$$
\mathrm{d} \vartheta_{1}=\omega_{12} \wedge \vartheta_{2} \text { en } d \vartheta_{2}=-\omega_{12} \wedge \vartheta_{1} .
$$

These yield

$$
\begin{aligned}
\frac{h_{y}}{h^{2}} d x \wedge d y & =\frac{1}{h} P d x \wedge d y \\
-\frac{h_{x}}{h^{2}} d x \wedge d y & =\frac{1}{h} Q d x \wedge d y
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
P=\frac{h_{y}}{h}, \quad Q=-\frac{h_{x}}{h}, \tag{1}
\end{equation*}
$$

so

$$
\omega_{12}=\frac{1}{h}\left(h_{y} d x-h_{x} d y\right) .
$$

4. Since $d \omega_{12}=-K \vartheta_{1} \wedge \vartheta_{2}$, and

$$
d \omega_{12}=\left(-P_{y}+Q_{x}\right) d x \wedge d y=h^{2}\left(-P_{y}+Q_{x}\right) \vartheta_{1} \wedge \vartheta_{2}
$$

we have

$$
\begin{equation*}
K=h^{2}\left(P_{y}-Q_{x}\right) . \tag{2}
\end{equation*}
$$

Substitution in (1) and (2) yields

$$
K=h\left(h_{x x}+h_{y y}\right)-\left(h_{x}^{2}+h_{y}^{2}\right) .
$$

If $h(x, y)=\frac{1}{2}\left(1-x^{2}-y^{2}\right)$, then $K=-1$.

