Exam Analysis on Manifolds

WIANVAR-07.2015-2016.2A April 4th, 2016, 9:00-12:00 hrs.

1, , ,

This exam consists of three assignments. You get 10 points for free.

Assignment 1. (30 pt.)

Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$, and let $i: M \to \mathbb{R}^3$ be the inclusion map.

1. (8 pt.) Construct an atlas on M such that:

(i) M becomes a two-dimensional C[∞]-manifold;
(ii) the inclusion map i is a C[∞]-map.

Prove that this atlas satisfies both (i) and (ii).

- 2. (8 pt.) Let σ be the one-form on \mathbb{R}^3 given by $\sigma = x \, dx + y \, dy$. Prove that $i^*\sigma = 0$.
- 3. (7 pt.) Let $\Omega = dx \wedge dy \wedge dz$ be the volume form on \mathbb{R}^3 , and let X be the vector field on \mathbb{R}^3 given by

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}.$$

Prove that $\iota_X \Omega = x dy \wedge dz - y dx \wedge dz$. (Recall that $\iota_X \Omega$ is the two-form given by $\iota_X \Omega(Y, Z) = \Omega(X, Y, Z)$.)

4. (7 pt.) Prove that $i^*(\iota_X \Omega)$ is a nowhere zero two-form on M.

Assignment 2. (30 pt.)

Let M be a compact connected 2n-dimensional manifold without boundary, and let ω be a two-form on M.

In the following assignments, $\omega_k = \underbrace{\omega \wedge \cdots \wedge \omega}_{k \text{ factors}}$, for integers $k \ge 1$.

- 1. (8 pt.) Prove: if ω is closed, then for $k \ge 1$, the 2k-form ω_k is also closed.
- 2. (8 pt.) Prove: if ω is exact, then for $k \ge 1$, the 2k-form ω_k is also exact.

In the following two assignments, assume that ω_n is a nowhere zero 2n-form on M.

- 3. (8 pt.) Prove that ω is not exact.
- 4. (6 pt.) Prove that M is not contractible to a point.

Assignment 3 on next page

Assignment 3. (30 pt.)

Let $M = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$. We turn M into a Riemannian two-manifold by equipping it with the inner product $\langle \cdot, \cdot \rangle$, defined by

$$\langle v, w \rangle = \frac{v \cdot w}{h(x, y)^2},$$

for $v, w \in T_pM$, where $h: M \to \mathbb{R}$ is a positive C²-function on M, and $v \cdot w$ is the standard inner product of v and w on \mathbb{R}^2 .

- 1. (5 pt.) Prove that there is a differentiable function $f: M \to \mathbb{R}$ such that $\{F_1, F_2\}$, with $F_1 = f \frac{\partial}{\partial x}$ and $F_2 = f \frac{\partial}{\partial y}$, is an (orthonormal) moving frame on M.
- 2. (6 pt.) Determine the coframe $\{\vartheta_1, \vartheta_2\}$ of this moving frame (i.e., express these one-forms in terms of dx and dy).
- 3. (10 pt.) Determine the connection form ω_{12} of the moving frame $\{F_1, F_2\}$.
- 4. (9 pt.) Determine the Gaussian curvature K(x, y) at $(x, y) \in M$, and prove that K = -1 for $h(x, y) = \frac{1}{2} (1 x^2 y^2)$.

Solutions

Assignment 1.

1. Let $U_1 = (0, 2\pi) \times \mathbb{R} \subset \mathbb{R}^2$ and let $U_2 = (-\frac{1}{2}\pi, \frac{1}{2}\pi) \times \mathbb{R} \subset \mathbb{R}^2$, and let $f_i : U_i \to \mathbb{R}^3$ be given by

$$f_i(u, v) = (\cos u, \sin u, v).$$

We shall prove that $\{(u_1, f_1), (u_2, f_2)\}$ defines a C^{∞}-atlas on M. First observe that $V := f_1(u_1) \cap f_2(u_2)$ consists of two connected components. More precisely, $(u, v) \in f_1^{-1}(V)$ iff $0 < u < \frac{1}{2}\pi$ or $\frac{3}{2}\pi < u < 2\pi$. Similarly, $(u, v) \in f_2^{-1}(V)$ iff $-\frac{1}{2}\pi < u < 0$ or $0 < u < \frac{1}{2}\pi$. Furthermore, if $f_1(u, v) = f_2(u', v')$, then v' = v and u' = u modulo 2π . A careful analysis shows that, for $(u, v) \in f_1^{-1}(V)$, we have

$$f_2^{-1} \circ f_1(u, v) = egin{cases} (u, v), & ext{if } 0 < u < rac{1}{2}\pi, \ (u - 2\pi, v), & ext{if } rac{3}{2}\pi < u < 2\pi. \end{cases}$$

Therefore, $f_2^{-1} \circ f_1 : f_1^{-1}(V) \to f_2^{-1}(V)$ is C^{∞} . Its inverse $f_1^{-1} \circ f_2 : f_2^{-1}(V) \to f_1^{-1}(V)$ is also C^{∞} .

To prove that the inclusion map is C^{∞} , observe that $id^{-1} \circ i \circ f_j : U_j \to \mathbb{R}^3$ is equal to $g_j : U_j \to \mathbb{R}^3$, defined by $g_j(u, v) = (\cos u, \sin u, v)$. Note that on the manifold \mathbb{R}^3 we use the atlas (\mathbb{R}^3, id) . Also note that f_j and g_j only differ in the sense that they have different ranges. Since g_j is C^{∞} , the claim follows.

2. We shall prove that both local representatives $f_j^*(i^*\sigma)$, j = 1, 2, are zero. If f is either of the maps f_1 or f_2 , then $f^*(i^*\sigma) = (i \circ f)^*(\sigma)$, and $(i \circ f)(u, v) = (\cos u, \sin u, v)$. Hence, $f^*(i^*\sigma) = \cos u d(\cos u) + \sin u d(\sin u) = -\cos u \sin u du + \sin u \cos u du = 0$.

3. Let $\omega = \iota_X \Omega$, then

$$\omega = \omega(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) \, dx \wedge dy + \omega(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}) \, dx \wedge dz + \omega(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \, dy \wedge dz.$$

Therefore, the claim follows from

$$\begin{split} &\omega(\frac{\partial}{\partial x},\frac{\partial}{\partial y}) = \Omega(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y},\frac{\partial}{\partial x},\frac{\partial}{\partial y}) = 0, \\ &\omega(\frac{\partial}{\partial x},\frac{\partial}{\partial z}) = \Omega(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y},\frac{\partial}{\partial x},\frac{\partial}{\partial z}) = -y, \\ &\omega(\frac{\partial}{\partial y},\frac{\partial}{\partial z}) = \Omega(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y},\frac{\partial}{\partial y},\frac{\partial}{\partial z}) = x. \end{split}$$

4. The local representatives of ω are

$$(i \circ f_i)^*(\omega) = -\sin u d(\cos u) \wedge dv + \cos u d(\sin u) \wedge dv = du \wedge dv.$$

Since these local representatives are nowhere zero, ω is nowhere zero.

Assignment 2.

The proofs in parts 1 and 2 are by induction, using $\omega_k = \omega \wedge \omega_{k-1}$ for k > 1.

1. Since $d\omega = 0$, the claim is obvious for k = 1. So let k > 1, and suppose $d\omega_{k-1} = 0$. Then, since deg $\omega_{k-1} = 2(k-1)$ is even:

$$d\omega_k = d\omega \wedge \omega_{k-1} + \omega \wedge d\omega_{k-1} = 0.$$

Therefore, ω_k is closed for all integers $k \ge 1$.

2. Since ω is exact (say $\omega = d\eta$), the claim is obvious for k = 1. So let k > 1, and suppose ω_{k-1} is exact. This implies $d\omega_{k-1} = 0$, so

$$\omega_{k} = d\eta \wedge \omega_{k-1} = d(\eta \wedge \omega_{k-1}) - \eta \wedge (d\omega_{k-1}) = d(\eta \wedge \omega_{k-1}).$$

Therefore, ω_k is exact for all integers $k \ge 1$.

3. Suppose ω is exact. According to part 2, ω_n is exact, say $\omega_n = d\eta$ for some (2n-1)-form η on M. The manifold M is orientable, since ω_n is a nowhere zero 2n-form on M. Therefore, we may use the theorem of Stokes to derive

$$0 \neq \int_{M} \omega_n = \int_{M} d\eta = \int_{\partial M} \eta = 0,$$

since $\partial M = \emptyset$. (The first inequality follows from the fact that M is connected.) This contradiction proves that ω is not exact.

4. Since $d\omega_n = 0$ (being a (2n+1)-form on a 2n-dimensional manifold), ω_n is closed. Suppose M is contractible to a point. Then ω_n is exact according to Poincaré's Lemma. According to Parts 2 and 3 this is a contradiction, so M is not contractible to a point.

Assignment 3.

1. Since
$$\langle f \frac{\partial}{\partial x}, f \frac{\partial}{\partial y} \rangle = 0$$
, and $\langle f \frac{\partial}{\partial x}, f \frac{\partial}{\partial x} \rangle = \langle f \frac{\partial}{\partial y}, f \frac{\partial}{\partial y} \rangle = \frac{f^2}{h^2}$, we take $f = h$.

2. Let ϑ_1 and ϑ_2 be the dual one-forms, then

$$\vartheta_1 = \vartheta_1(\frac{\partial}{\partial x}) dx + \vartheta_1(\frac{\partial}{\partial y}) dy = \frac{1}{h} dx.$$

Similarly: $\vartheta_2 = \frac{1}{h} dy$.

3. Let $\omega_{12} = P dx + Q dy$. To determine P and Q, we use the identities

$$\mathrm{d}\vartheta_1 = \omega_{12} \wedge \vartheta_2$$
 en $\mathrm{d}\vartheta_2 = -\omega_{12} \wedge \vartheta_1$.

These yield

$$\frac{h_y}{h^2} dx \wedge dy = \frac{1}{h} P \, dx \wedge dy,$$
$$-\frac{h_x}{h^2} dx \wedge dy = \frac{1}{h} Q \, dx \wedge dy.$$

Therefore,

$$P = \frac{h_y}{h}, \quad Q = -\frac{h_x}{h}, \tag{1}$$

SO

$$\omega_{12}=\frac{1}{h}(h_y\,dx-h_x\,dy).$$

4. Since $d\omega_{12}=-K\,\vartheta_1\wedge\vartheta_2,$ and

$$d\omega_{12} = (-P_y + Q_x) \, dx \wedge dy = h^2 (-P_y + Q_x) \, \vartheta_1 \wedge \vartheta_2.$$

we have

$$K = h^2 (P_y - Q_x).$$
⁽²⁾

Substitution in (1) and (2) yields

$$\mathbf{K} = \mathbf{h} \left(\mathbf{h}_{\mathbf{x}\mathbf{x}} + \mathbf{h}_{\mathbf{y}\mathbf{y}} \right) - \left(\mathbf{h}_{\mathbf{x}}^2 + \mathbf{h}_{\mathbf{y}}^2 \right).$$

If $h(x,y)=\frac{1}{2}\,(1-x^2-y^2),$ then K=-1.