Exam Analysis on Manifolds
WIANVAR-07.2015-2016.2A
April 4th, 2016, 9:00-12:00 hrs.

This exam consists of three assignments. You get 10 points for free.

Assignment 1. (30 pt.)
Let M ={(x,y,z) € R® | x* +y2 =1}, and let i: M — R3 be the inclusion map.

1. (8 pt.) Construct an atlas on M such that:

(i) M becomes a two-dimensional C*°-manifold;
(ii) the inclusion map i is a C*°-map.

Prove that this atlas satisfies both (i) and (ii).

2. (8 pt.) Let o be the one-form on R3 given by o = x dx +y dy.
Prove that i*o = 0.

3. (7 pt.) Let Q = dx A dy A dz be the volume form on R3, and let X be the
vector field on R? given by

0 0
X=x— —.
Xax +yay

Prove that 1xQQ = xdy A\ dz —ydx A dz.
(Recall that 1xQ is the two-form given by xQ(Y,Z) = Q(X,Y,Z).)

4. (7 pt.) Prove that i*(1xQ)) is a nowhere zero two-form on M.

Assignment 2. (30 pt.)
Let M be a compact connected 2n-dimensional manifold without boundary, and let
w be a two-form on M.

In the following assignments, wy = w /\--- A\ w, for integers k > 1.

k factors

1. (8 pt.) Prove: if w is closed, then for k > 1, the 2k-form wy is also closed.
2. (8 pt.) Prove: if w is exact, then for k > 1, the 2k-form wy is also exact.

In the following two assignments, assume that w, is a nowhere zero 2n-form on M.
3. (8 pt.) Prove that w is not exact.

4. (6 pt.) Prove that M is not contractible to a point.

Assignment 3 on next page




Assignment 3. (30 pt.)
Let M ={(x,y) € R? | x* + y? < 1}. We turn M into a Riemannian two-manifold by
equipping it with the inner product (,-), defined by

v-w
h(x,y)?’

<V» W> -
for vyiw € T,M, where h : M — R is a positive C2-function on M, and v - w is the
standard inner product of v and w on RZ.

1. (5 pt.) Prove that there is a differentiable function f : M — R such that {F;, F,},
with F; = f 6% and F, =f %, is an (orthonormal) moving frame on M.

2. (6 pt.) Determine the coframe {9,d,} of this moving frame (i.e., express these
one-forms in terms of dx and dy).

3. (10 pt.) Determine the connection form w;, of the moving frame {Fy, F2}.

4. (9 pt.) Determine the Gaussian curvature K(x,y) at (x,y) € M, and prove that
K = —1 for h(x,y) = % (1—x*—y?).



Solutions

Assignment 1.
1. Let Uy = (0,271) x R C R? and let U, = (—Im, 17) x R € R?, and let f; : Uy — R3
be given by

fi(u,v) = (cosu,sinu,v).

We shall prove that {(Uy, fq), (Uy, f2)} defines a C*°-atlas on M. First observe that
V= 1f;(U;) Nf2(U,) consists of two connected components. More precisely, (u,v) €
f71 (V) iff 0 <u < Jmor 3m < u < 2m Similarly, (u,v) € f;' (V) if —Jm<u<O0or
O<u< %7{. Furthermore, if f1(u,v) = f(u/,v’), then v/ =v and u’ = u modulo 27.
A careful analysis shows that, for (u,v) € f(] (V), we have

» (u,v), fo<u< %7‘[,
5 ofi(u,v) =
(w—2mv), if3m<u<?2m

Therefore, f? ofy: fﬂ (V) — fz’1 (V) is C*°. Its inverse fﬂ ofy: 1‘2’1 (V) — f?1 (V) is
also C®°.

To prove that the inclusion map is C*, observe that id ' o iofj: Uy — R3 is equal
to gj: Uj — R3, defined by gj(u,v) = (cosu,sinu,v). Note that on the manifold R3
we use the atlas (R3,id). Also note that fj and g; only differ in the sense that they
have different ranges. Since g; is C*°, the claim follows.

2. We shall prove that both local representatives ff(i*cr), j = 1,2, are zero. If f is
either of the maps fy or f,, then f*(i*0) = (iof)*(0), and (iof)(u,v) = (cosu,sinu,v).
Hence, f*(i*0) = cosud(cosu)+sinud(sinu) = —cosusinudu+sinucosudu = 0.

3. Let w = 1xQ, then

w = w(aix, a(;) dx A\ dy + w(%, %) dx A\ dz + w(az, E%) dy A dz.
Therefore, the claim follows from
W35 32) = Qlxg +ugli 3o 3h) =0,
W35 30) = Qg +ugt 3o 3l = =,
W01 5) = Qg +y30 30 3 =

4. The local representatives of w are
(iofj)"(w) = —sinud(cosu) A dv+cosud(sinu) A dv=du/dv.

Since these local representatives are nowhere zero, w is nowhere zero.



Assignment 2.
The proofs in parts 1 and 2 are by induction, using wy = w A wy_7 for k > 1.

1. Since dw = 0, the claim is obvious for k = 1. So let k > 1, and suppose dwy_1 = 0.
Then, since deg wy_1 = 2(k — 1) is even:

dwy =dw A wy_1 +wAdwg_g =0.

Therefore, wy is closed for all integers k > 1.

2. Since w is exact (say w = dn), the claim is obvious for k = 1. So let k > 1, and
suppose wy_1 is exact. This implies dwy_1 =0, so

wr =dnA w1 =dmMAwr1) —nA(dwyq) =dm A wy_1).

Therefore, wy is exact for all integers k > 1.

3. Suppose w is exact. According to part 2, w, is exact, say w,, = dn for some
(2n — 1)-form n on M. The manifold M is orientable, since w, is a nowhere zero
2n-form on M. Therefore, we may use the theorem of Stokes to derive

O%J wn—J dn—J n=0,
M M oM

since OM = (). (The first inequality follows from the fact that M is connected.) This
contradiction proves that w is not exact.

4. Since dwy = 0 (being a (2n+1)-form on a 2n-dimensional manifold), wx, is closed.
Suppose M is contractible to a point. Then w, is exact according to Poincaré’s
Lemma. According to Parts 2 and 3 this is a contradiction, so M is not contractible
to a point.

Assignment 3.
: f2
1. Since (f%,f%) =0,and (FL )= (r 0 r 0y 30 we take f = h.

2. Let ¥y and ¥, be the dual one-forms, then

0 0 1
‘8] —‘8](67)() dX+19](@) dy = E dx.

1
Similarly: ¥, = H dy.
3. Let wyp =Pdx+ Qdy. To determine P and Q, we use the identities
d‘ﬁ] = W12 /\192 en dﬁz = —Ww12 /\191.

These yield

hy 1
ﬁdx/\ dy = EP dx A dy,

hy 1
—ﬁdx/\ dy = }—LQ dx A dy.



Therefore,

SO

1
Wiy = n (hy dx — hy dy).

4. Since dwiy; = — K97 Ady, and
dwiz = (—Py + Qx) dx A dy = h?(—Py + Q,) 91 A 9s.
we have
K =h?(Py — Q). (2)
Substitution in (1) and (2) yields
K =h (he + hyy) — (hi +h).

If h(x,y) = % (1 —x? —y?), then K = —1.



